Mass Wasting

ESA Logo

to Earth Processes / Structures / Extreme Weather...

Mass Wasting

adapted to HTML from lecture notes of Prof. Stephen A. Nelson Tulane University

    see also Contents of E-Learning...
    see also Extreme Flooding Case Study - Johnstone River...
 

Gravity
The Role of Water
Mass-Wasting Processes
Slumps
Rockfall and Debris Falls
Sediment Flows
Slurry Flows
Solifuction
Granular Flows
Mass-Wasting in Cold Climates
Triggering of Mass-Wasting Events
Exceptional Precipitation
Volcanic Eruptions
Submarine Slope Failures



Mass-wasting is the down-slope movement of Regolith (loose uncemented mixture of soil and rock particles that covers the Earth's surface) by the force of gravity without the aid of a transporting medium such as water, ice, or wind. Still, as we shall see, water plays a key role. Mass-wasting is part of a continuum of erosional processes between weathering and stream transport. Mass-wasting causes regolith to move down-slope where sooner or later the loose particles will be picked up by another transporting agent and eventually moved to a site of deposition such as an ocean basin or lake bed. In order for regolith to move in a mass wasting process it must be on a slope, since gravity will only cause motion if the material is on a slope.

Gravity


gravflat.gif

Gravity is a force that acts everywhere on the Earth's surface, pulling everything in a direction toward the center of the Earth. On a flat surface, parallel to the Earth's surface the force of gravity acts downward. So long as the material remains on the flat surface it will not move under the force of gravity.

On a slope, the force of gravity can be resolved into two components: a component acting perpendicular to the slope, and a component acting tangential to the slope.

gravslope.gif

Thus, down-slope movement is favored by steeper slope angles (increasing the shear stress) and anything that reduces the shear strength (such as lowering the cohesion among the particles or lowering the frictional resistance.


The Role of Water

Although water is not directly involved as the transporting medium in mass-wasting processes, it does play an important role. Think about building a sandcastle on the beach. If the sand is totally dry, it is impossible to build a pile of sand with a steep face like a castle wall. If the sand is somewhat wet, however, one can build a vertical wall. If the sand is too wet, then it flows like a fluid and cannot remain in position as a wall.

drysand.gif

Dry unconsolidated grains will form a pile with a slope angle determined by the angle of repose. The angle of repose is the steepest angle at which a pile of unconsolidated grains remains stable, and is controlled by the frictional contact between the grains. In general, for dry materials the angle of repose increases with increasing grain size, but usually lies between about 30 and 37 degrees.

wetsand.gif

Slightly wet unconsolidated materials exhibit a very high angle of repose because surface tension between the water and the grains tends to hold the grains in place.
 
slurry.gif

When the material becomes saturated with water, the angle of repose is reduced to very small values and the material tends to flow like a fluid. This is because the water gets between the grains and eliminates grain to grain frictional contact.


Mass-Wasting Processes

The down-slope movement of material, whether it be bedrock, regolith, or a mixture of these, is commonly referred to as a landslide. All of these processes generally grade into one another, so classification of mass-wasting processes is somewhat difficult. We will use the classification used by your textbook, which divides mass wasting processes into two broad categories and further subdivides these categories.
Slope Failures- a sudden failure of the slope resulting in transport of debris down hill by sliding, rolling, falling, or slumping.
slumpcr.gif

Slumps

- types of slides wherein downward rotation of rock or regolith occurs along a curved surface. The upper surface of each slump block remains relatively undisturbed, as do the individual blocks. Slumps leave arcuate scars or depressions on the hill slope. Heavy rains or earthquakes usually trigger slumps.
 
slump.jpg

debris.jpg

Rock Falls and Debris Falls

Rock falls occur when a piece of rock on a steep slope becomes dislodged and falls down the slope. Debris falls are similar, except they involve a mixture of soil, regolith, and rocks. A rock fall may be a single rock, or a mass of rocks, and the falling rocks can dislodge other rocks as they collide with the cliff. At the base of most cliffs is an accumulation of fallen material termed talus. The slope of the talus is controlled by the angle of repose for the size of the material. Since talus results from falling large rocks or masses of debris the angle of repose is usually greater than it would be for sand.

rockfall.gif

slides.gif

Rock Slides and Debris Slides

Rock slides and debris slides result when rocks or debris slide down a pre-existing surface, such as a bedding plane or joint surface. Piles of talus are common at the base of a rock slide or debris slide.
 

Sediment Flows

Sediment flows occur when sufficient force is applied to rocks and regolith that they begin to flow down slope. A sediment flow is a mixture of rock, regolith with some water. They can be broken into two types depending on the amount of water present.
Each of these classes of sediment flows can be further subdivided on the basis of the velocity at which flowage occurs.

sedflows.gif

Slurry Flows

Solifluction

produces distinctive lobes on hill slopes . These occur in areas where the soil remains saturated with water for long periods of time.

Granular Flows


Mass-Wasting in Cold Climates

Mass-wasting in cold climates is governed by the fact that water is frozen as ice during long periods of the year. Ice, although it is solid, does have the ability to flow, and freezing and thawing cycles can also contribute to movement.


Subaqueous Mass-Wasting

Mass wasting processes also occur on steep slopes in the ocean basins. A slope failure can occur due to over-accumulation of sediment on slope or in a submarine canyon, or could occur as a result of a shock like an earthquake. Slumps, debris flows, and landslides are common.


Triggering of Mass-Wasting Events

A mass-wasting event can occur any time a slope becomes unstable. Sometimes, as in the case of creep or solifluction, the slope is unstable all of the time, and the process is continuous. But other times, triggering events can occur that cause a sudden instability to occur.


slopemod.gif

Undercutting
- streams eroding their banks or surf action along a coast can undercut a slope making it unstable.

undercut.gif

Exceptional Precipitation

heavy rains can saturate regolith reducing grain to grain contact and reducing the angle of repose, thus triggering a mass-wasting event.

Volcanic Eruptions

produce shocks like explosions and earthquakes. They can also cause snow to melt or empty crater lakes, rapidly releasing large amounts of water that can be mixed with regolith to reduce grain to grain contact and result in debris flows, mudflows, and landslides.

Submarine Slope Failures

these can be caused by rapid deposition of sediment that does not allow water trapped between grains to escape, or by generation of methane gas from the decay of organic material, which increases pressure between unconsolidated grains and thus reduces grain to grain contact.